Journal of Organometallic Chemistry, 112 (1976) 249-251 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE MERCURATION OF ortho- AND meta-CARBORANES

V.I. BREGADZE *, V.TS. KAMPEL and N.N. GODOVIKOV

Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.)

(Received January 26th, 1976)

Summary

The mercuration of *ortho-* and *meta-*carboranes is described. This mercuration proceeds at the boron atom of the icosahedral at position 9.

The reaction of direct mercuration of *o*- and *m*-carboranes has not been described until now. We have found that such mercuration did not occur even with boiling of *o*-carborane with mercury acetate for several hours. This may be explained by the electron-deficient properties of the carborane nucleus which hinder electrophilic substitution reactions.

We used a strong mercuration agent, mercury trifluoroacetate [1], to accomplish the mercuration of carborane. The interaction of carborane with one equivalent of mercury trifluoroacetate in trifluoroacetic acid proceeds easily at room temperature with a marked exothermic effect to give the mono-substituted product:

m(o)-CHB₁₀H₁₀CH + (CF₃CO₂)₂Hg \rightarrow CF₃CO₂Hg-m(o)-CHB₁₀H₉CH

o-Carborane reacts much faster than *m*-carborane. This fact confirms the conclusion that o-carborane is attacked by electrophilic agents to a greater extent than *m*-carborane [2]. Treatment of carboranyltrifluoroacetates in acetone with an aqueous solution of sodium chloride has led to the corresponding chlorides:

$CF_3CO_2Hg-m(o)-CHB_{10}H_9CH \xrightarrow{NaCl} ClHg-m(o)-CHB_{10}H_9CH$

The substitution of *o*- and *m*-carboranes proceeds at position 9 of the carborane nucleus. The position of substitution was determined by bromination of carboranylmercury chlorides in carbon tetrachloride to give the known bromides:

9-ClHg-m(o)-CHB₁₀H₉CH $\xrightarrow{\text{Br}_2}$ 9-Br-m(c)-CHB₁₀H₉CH

Table 1 contains physical data of the compounds obtained.

Compounds	M.p. (°C)	Yield	Analysis Fo	und (calcd.) (9	(9	· .		m/c
		(%)	υ	H	B	õ	Hg	
9-CF3 CO2 Hg-o-HCB10H9CH	160—162 ^a	66	10.42 (10.51)	2.32 (2.42)	22,91 (23,67)		43.38 (43.90)	
9-CF3CO2HL-m-HCB ₁₀ H9CH	117—118 a	1	10.31 (10.51)	2.54 (2.42)	23,08 (23.67)		(43.90)	
9-CIHg-0-HCB ₁₀ H9 CH	263264 b	06	7.08 (6.33)	2.99 (2.92)	28.47 (28.52)	9,26 (9,34)	52.01 (52.87)	379
9-ClHg-m-HCB1 0H9 CH	266—267 b	92	6.67 (6.33)	2.94 (2.92)	28.20 (28.52)	9.63 (9.34)	52.40 (52.87)	379

BORON-SUBSTITUTED CARBORANYLMERCURY COMPOUNDS

TABLE 1

25

a Crystallized from toluene/hexane. b Crystallized from toluene.

H.C. Brown and R.A. Wirkkala, J. Amer. Chem. Soc., 88 (1966) 1447.
R.N. Grimes, Carboranes, Academic Press, New York/London, 1970, p. 173.