THE MERCURATION OF ortho- AND meta-CARBORANES

V.I. BREGADZE *, V.TS. KAMPEL and N.N. GODOVIKOV
Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.)

(Received January 26th, 1976)

Summary

The mercuration of ortho- and meta-carboranes is described. This mercuration proceeds at the boron atom of the icosahedral at position 9 .

The reaction of direct mercuration of o - and m-carboranes has not been described until now. We have found that such mercuration did not occur even with boiling of o-carborane with mercury acetate for several hours. This may be explained by the electron-deficient properties of the carborane nucleus which hinder electrophilic substitution reactions.

We used a strong mercuration agent, mercury trifluoroacetate [1], to accomplish the mercuration of carborane. The interaction of carborane with one equivalent of mercury trifluoroacetate in trifluoroacetic acid proceeds easily at room temperature with a marked exothermic effect to give the mono-substituted product:
$m(o)-\mathrm{CHB}_{10} \mathrm{H}_{10} \mathrm{CH}+\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2} \mathrm{Hg} \rightarrow \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Hg}-m(o)-\mathrm{CHB}_{10} \mathrm{H}_{9} \mathrm{CH}$
o-Carborane reacts much faster than m-carborane. This fact confirms the conclusion that o-carborane is attacked by electrophilic agents to a greater extent than m-carborane [2]. Treatment of carboranyltrifluoroacetates in acetone with an aqueous solution of sodium chloride has led to the corresponding chlorides:

$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Hg}-m(o)-\mathrm{CHB}_{10} \mathrm{H}_{9} \mathrm{CH} \xrightarrow{\mathrm{NaCl}} \mathrm{ClHg}-m(o)-\mathrm{CHB}_{10} \mathrm{H}_{9} \mathrm{CH}$

The substitution of o - and m-carboranes proceeds at position 9 of the carborane nucleus. The position of substitution was determined by bromination of carboranylmercury chlorides in carbon tetrachloride to give the known bromides:
$9-\mathrm{ClHg}-m(o)-\mathrm{CHB}_{10} \mathrm{H}_{9} \mathrm{CH} \xrightarrow{\mathrm{Br} 2} 9-\mathrm{Br}-m(c)-\mathrm{CHB}_{10} \mathrm{H}_{9} \mathrm{CH}$
Table 1 contains physical data of the compounds obtained.
TABLE 1
BORON-SUBSTITUTED CARBORANYLMERCURY COMPOUNDS

Compounds	M.p. (${ }^{\circ} \mathrm{C}$)	Yicld (\%)	Analysis Found (caled.) (\%)					m / c
			c	H	B	Cl	Hg	
$9-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Hg} 0 \circ \cdot \mathrm{HCB}_{10} \mathrm{H}_{9} \mathrm{CH}$	160-162 a	66	$\begin{gathered} 10.42 \\ (10.51) \end{gathered}$	$\begin{gathered} 2.32 \\ (2.42) \end{gathered}$	$\begin{gathered} 22,91 \\ (23,67) \end{gathered}$		$\begin{gathered} 43.38 \\ (43.90) \end{gathered}$	
$9-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Hr}-\mathrm{m}-\mathrm{HCB}_{10} \mathrm{H}_{9} \mathrm{CH}$	117-118 ${ }^{\text {a }}$	71	$\begin{gathered} 10.31 \\ (10.51) \end{gathered}$	$\begin{gathered} 2.54 \\ (2.42) \end{gathered}$	$\begin{gathered} 23.08 \\ (23.67) \end{gathered}$		(43.90)	
$9-\mathrm{ClHg}_{\mathrm{O}}-\mathrm{HCB}_{10} \mathrm{HH9} \mathrm{CH}$	263-264 ${ }^{\text {b }}$	90	$\begin{gathered} 7.08 \\ (6.33) \end{gathered}$	$\begin{gathered} 2.99 \\ (2.92) \end{gathered}$	$\begin{gathered} 28.47 \\ (28.52) \end{gathered}$	$\begin{gathered} 9,26 \\ (9,34) \end{gathered}$	$\begin{aligned} & 52.01 \\ & (52.87) \end{aligned}$	379
$9-\mathrm{ClHg}-\mathrm{m}-\mathrm{HCB}_{10} \mathrm{H} \mathrm{H}_{9} \mathrm{CH}$	266-267 ${ }^{\text {b }}$	92	$\begin{gathered} 6.67 \\ (6.33) \end{gathered}$	$\begin{gathered} 2.94 \\ (2.92) \end{gathered}$	$\begin{gathered} 28.20 \\ (28.52) \end{gathered}$	$\begin{gathered} 9,53 \\ (9,34) \end{gathered}$	$\begin{gathered} 52.40 \\ (52.87) \end{gathered}$	379

[^0]
References

1 H.C. Brown and R.A. Wirkkala, J. Amer. Chem. Soc. 88 (1966) 1447.
2 R.N. Grimes, Carboranes, Academic Press, New York/London, 1970, p. 173.

[^0]: ${ }^{a}$ Crystalized from toluene/hexane. ${ }^{b}$ Crystallized from inluene.

